Pular para o conteúdo principal
  • Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
Início
Buscar: Pesquisador(a) | Publicação
Portuguese Chinese (Simplified) English French German Korean Russian Spanish Swahili Yoruba

Menu principal

  • PESQUISADORES
  • REVISTAS
  • ASSUNTOS
  • PUBLICAÇÕES
Início A minimum principle for Lyapunov exponents and a higher-dimensional version of a Theorem of Mané

A minimum principle for Lyapunov exponents and a higher-dimensional version of a Theorem of Mané

Título: 
A minimum principle for Lyapunov exponents and a higher-dimensional version of a Theorem of Mané
Autor: 
Isabel Lugao Rios
Ano: 
2004
Revista: 
Qualitative Theory of Dynamical Systems
Tags: 
Lyapunov exponents
Hyperbolicity
invariant measures
Idioma: 
Inglês
Buscar essa publicação no Google Acadêmico

Publicações com a mesma autoria

Critical saddle-node horseshoes: bifurcations and entropy
Kupka-Smale diffeomorphisms at the boundary of uniform hyperbolicity: a model
Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies
Invariant manifolds and equilibrium states for non-uniformly hyperbolic horseshoes
Uniform hyperbolicity for random maps with positive Lyapunov exponents
The Boundary of Hyperbolicity for Hénon ? Like Families
Destroying horseshoes via heterodimensional cycles: generating bifurcations inside homoclinic classes
On t-conformal measures and Hausdorff dimension for a family of non-uniformly hyperbolic horseshoes
Equilibrium states for partially hyperbolic horseshoes
Attractors and repellers near generic elliptic points of reversible maps
  •  
  • 1 de 2
  • próximo ›

Sugestão de publicações

  • Kupka-Smale diffeomorphisms at the boundary of uniform hyperbolicity: a model

Sobre o site | Fale conosco

Versão Alpha. As informações contidas neste site foram importadas do Lattes no dia 20/04/2022.