Pular para o conteúdo principal
  • Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
Início
Buscar: Pesquisador(a) | Publicação
Portuguese Chinese (Simplified) English French German Korean Russian Spanish Swahili Yoruba

Menu principal

  • PESQUISADORES
  • REVISTAS
  • ASSUNTOS
  • PUBLICAÇÕES
Início L 2 harmonic forms and stability of hypersurfaces with constant mean curvature

L 2 harmonic forms and stability of hypersurfaces with constant mean curvature

Título: 
L 2 harmonic forms and stability of hypersurfaces with constant mean curvature
Autor: 
Cheng Xu
Ano: 
2000
DOI: 
10.1007/bf01244246
Revista: 
Boletim da Sociedade Brasileira de Matemática
ISSN: 
01003569
Idioma: 
Inglês
Buscar essa publicação no Google Acadêmico

Publicações com a mesma autoria

Asymptotic normal behavior of the kernel estimate of the mode of the probability density of $\varphi-$mixing samples
Stability and compactness for complete $f$-minimal surfaces
Estimation of the first eigenvalue on compact Riemannian manifolds with negative curvature
Eigenvalues of the drifted Laplacian on complete metric measure spaces
Simons-Type Equation for $$f$$ f -Minimal Hypersurfaces and Applications
Yamabe invariant for complete manifold with nonpositive scalar curvature
The asymptotic behavior of solutions to semilinear elliptic equations
Optimal constants of $$L^2$$ L 2 inequalities for closed nearly umbilical hypersurfaces in space forms
Spectral properties and rigidity for self-expanding solutions of the mean curvature flows
First eigenvalue estimate on Riemannian manifolds
  •  
  • 1 de 3
  • próximo ›

Sobre o site | Fale conosco

Versão Alpha. As informações contidas neste site foram importadas do Lattes no dia 20/04/2022.