Pular para o conteúdo principal
  • Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
Início
Buscar: Pesquisador(a) | Publicação
Portuguese Chinese (Simplified) English French German Korean Russian Spanish Swahili Yoruba

Menu principal

  • PESQUISADORES
  • REVISTAS
  • ASSUNTOS
  • PUBLICAÇÕES
Início Input space to neural network based load forecasters

Input space to neural network based load forecasters

Título: 
Input space to neural network based load forecasters
Autor: 
Vitor Hugo Ferreira
Ano: 
2008
DOI: 
10.1016/j.ijforecast.2008.07.006
Revista: 
International Journal of Forecasting
ISSN: 
01692070
Tags: 
demand forecasting
electricity
input selection
comparative studies
nonparametric methods
bayesian methods
Idioma: 
Inglês
Buscar essa publicação no Google Acadêmico

Publicações com a mesma autoria

Islanding Detection in Distributed Generation using Unsupervised Learning Techniques
A New Clustering Approach for Automatic Oscillographic Records Segmentation
The Induction Motor Parameter Estimation Using Genetic Algorithm
Load Forecasting for Control of the Use of Transmission System for Electric Distribution Utilities
Autonomous Kernel Based Models for Short Term Load Forecasting
Evaluation of Carbon Fiber Cables in Transmission Lines
Fault Diagnosis in Transmission Lines: Trends and Main Research Areas
Transformer Fleet Optimal Maintenance with Risk Considerations
Autonomous Neural Models for the Classification of Events in Power Distribution Networks
Electrical power systems engineering undergraduate courses in Brazil: Academic and market perspectives
  •  
  • 1 de 4
  • próximo ›

Sugestão de publicações

  • Information security governance in the electricity industry

Sobre o site | Fale conosco

Versão Alpha. As informações contidas neste site foram importadas do Lattes no dia 20/04/2022.