Pular para o conteúdo principal
  • Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
Início
Buscar: Pesquisador(a) | Publicação
Portuguese Chinese (Simplified) English French German Korean Russian Spanish Swahili Yoruba

Menu principal

  • PESQUISADORES
  • REVISTAS
  • ASSUNTOS
  • PUBLICAÇÕES
Início Improving a state-of-the-art heuristic for the minimum latency problem with data mining

Improving a state-of-the-art heuristic for the minimum latency problem with data mining

Título: 
Improving a state-of-the-art heuristic for the minimum latency problem with data mining
Autor: 
Alexandre Plastino de Carvalho
Ano: 
2022
DOI: 
10.1111/itor.12774
Revista: 
International Transactions in Operational Research
ISSN: 
14753995
Tags: 
Minimum Latency Problem
Hybrid Metaheuristics
GRASP
Data Mining
Home: 
[doi:10.1111/itor.12774]
Idioma: 
Inglês
Buscar essa publicação no Google Acadêmico

Publicações com a mesma autoria

A lazy feature selection method for multi-label classification
A Novel Feature Selection Method for Uncertain Features: An Application to the Prediction of Pro-/Anti-Longevity Genes
Attributes that may raise the occurrence of merge conflicts
On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis
Predicting the lifetime of pull requests in open-source projects
Sequential coding patterns: How to use them effectively in code recommendation
What factors influence the lifetime of pull requests?
A hybrid data mining heuristic to solve the point-feature cartographic label placement problem
Is p -value 0.05 enough? A study on the statistical evaluation of classifiers
MineReduce: An approach based on data mining for problem size reduction
  •  
  • 1 de 5
  • próximo ›

Sugestão de publicações

  • A lazy feature selection method for multi-label classification

Sobre o site | Fale conosco

Versão Alpha. As informações contidas neste site foram importadas do Lattes no dia 20/04/2022.